The Immunoglobulin Super Family Protein RIG-3 Prevents Synaptic Potentiation and Regulates Wnt Signaling
نویسندگان
چکیده
Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe the function of a Caenorhabditis elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of postsynaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. The effects of RIG-3 on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in postsynaptic receptor fields.
منابع مشابه
Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans
Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this stud...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملActivity-dependent synaptic Wnt release regulates hippocampal long term potentiation.
Wnts are important for various developmental and oncogenic processes. Here we show that Wnt signaling functions at synapses in hippocampal neurons. Tetanic stimulations induce N-methyl-d-aspartate receptor-dependent synaptic Wnt3a release, nuclear beta-catenin accumulations, and the activation of Wnt target genes. Suppression of Wnt signaling impairs long term potentiation. Conversely, activati...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملP18: Signaling Pathway in Long-Term Potentiation
Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 71 شماره
صفحات -
تاریخ انتشار 2011